Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202002.0381.v2

ABSTRACT

Corona viruses hijack human enzymes to assembly sugar coat on Spike glycoproteins. The mechanism that human antibodies may uncover the antigenic viral peptide epitopes hidden by sugar coat are unknown. In this study, we analyzed recombinant SARS-CoV-2 Spike protein secreted from BTI-Tn-5B1-4 cells, by trypsin and chymotrypsin digestion followed by mass spectrometry analysis. We acquired MS/MS spectrums for glycopeptides of all 22 predicted N-glycosylated sites. We further analyzed the surface accessibility of Spike proteins according to Cryo-EM and homolog-modeled structures, and available antibodies that bind to SARS-CoV-1. The results showed that all 22 N-glycosylated sites of SARS-CoV-2 are modified by high-mannose type of N-glycans. MS/MS fragmentation clearly established the glycopeptide identities. Electron densities of glycans cover most of the Spike receptor binding domain of SARS-CoV-2, except YQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQ, similar to a region FSPDGKPCTPPALNCYWPLNDYGFYTTTGIGYQ in SARS-CoV-1. Other surface-exposed domains included those located on Central Helix, between amino acids 967 and 1016 of SARS-CoV-1, and 985 to 1034 of SARS-CoV-2 Spike protein. As the majority of antibody paratopes bind to peptide portion with or without sugar modification, we propose a snake-catcher model that a minimal length of peptide is first clamped by a paratope, and the binding is either strengthened by sugars close to peptide, or not interfered by sugar modification.


Subject(s)
Severe Acute Respiratory Syndrome , Multiple Sclerosis
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.31.019216

ABSTRACT

The ongoing coronavirus disease (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a global public health concern due to relatively easy person-to-person transmission and the current lack of effective antiviral therapy. However, the exact molecular mechanisms of SARS-CoV-2 pathogenesis remain largely unknown. We exploited an integrated proteomics approach to systematically investigate intra-viral and virus-host interactomes for the identification of unrealized SARS-CoV-2 host targets and participation of cellular proteins in the response to viral infection using peripheral blood mononuclear cells (PBMCs) isolated from COVID-19 patients. Using this approach, we elucidated 251 host proteins targeted by SARS-CoV-2 and more than 200 host proteins that are significantly perturbed in COVID-19 derived PBMCs. From the interactome, we further identified that non-structural protein nsp9 and nsp10 interact with NKRF, a NF-[Kcy]B repressor, and may precipitate the strong IL-8/IL-6 mediated chemotaxis of neutrophils and overexuberant host inflammatory response observed in COVID-19 patients. Our integrative study not only presents a systematic examination of SARS-CoV-2-induced perturbation of host targets and cellular networks to reflect disease etiology, but also reveals insights into the mechanisms by which SARS-CoV-2 triggers cytokine storms and represents a powerful resource in the quest for therapeutic intervention.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.02.26.964882

ABSTRACT

A new coronavirus (CoV) identified as COVID-19 virus is the etiological agent responsible for the 2019-2020 viral pneumonia outbreak that commenced in Wuhan1-4. Currently there is no targeted therapeutics and effective treatment options remain very limited. In order to rapidly discover lead compounds for clinical use, we initiated a program of combined structure-assisted drug design, virtual drug screening and high-throughput screening to identify new drug leads that target the COVID-19 virus main protease (Mpro). Mpro is a key CoV enzyme, which plays a pivotal role in mediating viral replication and transcription, making it an attractive drug target for this virus5,6. Here, we identified a mechanism-based inhibitor, N3, by computer-aided drug design and subsequently determined the crystal structure of COVID-19 virus Mpro in complex with this compound. Next, through a combination of structure-based virtual and high-throughput screening, we assayed over 10,000 compounds including approved drugs, drug candidates in clinical trials, and other pharmacologically active compounds as inhibitors of Mpro. Six of these inhibit Mpro with IC50 values ranging from 0.67 to 21.4 M. Ebselen also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of this screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases where no specific drugs or vaccines are available.


Subject(s)
COVID-19 , Pneumonia
SELECTION OF CITATIONS
SEARCH DETAIL